New Johns Hopkins University simulations offer an intriguing look into Saturn`s interior, suggesting that a thick layer of helium rain influences the planet`s magnetic field.
The models, published in the journal AGU Advances, also indicate that Saturn`s interior may feature higher temperatures at the equatorial region, with lower temperatures at the high latitudes at the top of the helium rain layer.
It is notoriously difficult to study the interior structures of large gaseous planets, and the findings advance the effort to map Saturn`s hidden regions.
“By studying how Saturn formed and how it evolved over time, we can learn a lot about the formation of other planets similar to Saturn within our own solar system, as well as beyond it,” said co-author Sabine Stanley, a Johns Hopkins planetary physicist.
Saturn stands out among the planets in our solar system because its magnetic field appears to be almost perfectly symmetrical around the rotation axis.
Detailed measurements of the magnetic field gleaned from the last orbits of NASA`s Cassini mission provide an opportunity to better understand the planet`s deep interior, where the magnetic field is generated, said lead author Chi Yan, a Johns Hopkins Ph.D. candidate.
Post Your Comments